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-------------------------------------------------------------------ABSTRACT------------------------------------------------------------------ 
Digital signal processing algorithms are repetitive in nature. These algorithms are described by iterative data flow 
graph (DFG) where nodes represent tasks and edges represent communication. Execution of all nodes of the DFG 
once completes iteration. Successive iteration of any node are executive with a time displacement referred to as the 
iteration period. For all recursive signal processing algorithms, there exists an inherent fundamental lower bound on 
the iteration period referred to as the iteration period bound or the iteration period. This bound is fundamental to an 
algorithm and is independent of the implementation architecture. In other words it is impossible to achieve an 
iteration period less than the bound even when infinite processors are available to execute the recursive algorithm. 
 Iteration bound need to be determined in rate-optimal scheduling of iterative data flow graph. The iteration bound 
determination has to pre-order repeatedly in the scheduling phase of the high level synthesis. In recursive constrained 
scheduling a given processing algorithm is scheduled to achieve the minimum iteration period using the given 
hardware resources. In order to execute operation of the processing algorithm in parallel, the required number of 
processors or functional units required to execute the operation in parallel may be larger than the number of 
available resources. Generally the precedence to be assigned is not unique. Hence the iteration bound should be 
determined for every possible precedence to check which precedence leads to the final schedule with the minimum 
iteration period. Consequently the iteration bound may have to be computed many times and it is important to 
determine the iteration bound in minimum possible time. 
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1. INTRODUCTION 

Digital signal processing(DSP) is used in numerous 
application such as video compression, portable video 
system computers, digital audio, multimedia and wireless 
communication systems, radar imaging, acoustic beam 
forming, global positioning system, biomedical signal 
processing. The field of DSP has always been driven by the 
advance in DSP application and in scaled VLSI 
technologies. Therefore at any given time, DSP applications 
impose several challenges on the implementation of the 
DSP system. These implementations must satisfy the 
enforced sampling rate constraints of the real time DSP 
applications and must require less space and power 
consumption. 

 
     Methodologies needed to design custom or semi-custom 
VLSI circuit for these applications. DSP computation is 
different from general purpose computation in the sense 
that DSP programs are non- terminating program. In DSP 
computation, the same program is executed repetitively on 
an infinite time series. The non-terminating nature can be 

exploited to design more efficient DSP system by 
exploiting the dependency of tasks both within iteration and 
among multiple iterations. 

 
     Furthermore long critical path in DSP algorithms limit 
the performance of DSP system. These algorithms need to 
be transformed for design or �high speed� or �low-area� or 
�low-power� implementation. VLSI DSP is field of design 
efficient architecture, algorithms and circuit, which can be 
operated with either less area or power consumption or with 
higher speed or lower round off noise. High level 
architectural transformation that can be used to design 
families of architectures for a given algorithm. These 
transformation include �pipelining� �Retiming� �unfolding� 
�Folding� and �systolic array� design methodology. 

 
     The dramatically different sample rate and computation 
requirements necessitate different architecture 
considerations for implementations of DSP algorithms. For 
example, in a speech application a time- multiplexed 
architecture may be preferred where many algorithms 
operations are mapped to the same hardware. However the 
high speed requirement in video application can meet by 
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one to one mapping of algorithm operations to processors.       
Thus it is important to know the design technologies not 
just to a single architecture but a family of architecture out 
of which an appropriate architecture can be selected for a 
specific purpose. 
     Two important features that distinguish DSP from other 
general purpose computations are the  

•  Real time throughput requirement.  
•  Data driven property. 

The hardware should be designed to meet the tight 
throughput constraint of  the real time processing where 
new input samples need to be processed as they are 
received  periodically from the signal source as opposed to 
first storing them in buffers and then processing them in 
batch mode. If the throughput of a system is less than the 
required sample rate, the new inputs need to be stalled (or 
buffered), which requires an infinite length buffer. 
However, once the sample rate is met by the hardware, 
there is no advantage in making the computation any faster. 

 
     The second important attribute of signal processing 
systems is its data driven property, implied by the fact the 
any subtasks or computations in a DSP system can be 
performed once all the input data are available. In the sense, 
these systems are synchronized by the flow of data, instead 
of the system clock. This enables the use of asynchronous 
circuit for DSP system where no global clock is required. 

2. DSP ALGORITHMS  
DSP algorithms are described by non-terminating programs 
which execute the same code repetitively. For example, a 3-
tap FIR digital filter described by the non-terminating 
program. 

y(n)=ax(n)+bx(n-1)+cx(n-2); for n=1 to n=α          (1) 

     Execution of all the computations in the algorithms once 
is referred to as iteration. The iteration period is the time 
required for execution of an iteration of the algorithm. The 
iteration rate is the reciprocal of the iteration period. During 
each iteration, the 3-tap FIR filter equation (1) above 
processes one input signal, completes 3 multiplication and 2 
addition operations (in serial or in parallel), and generates 
one output sample. DSP systems are also characterized by 
the sampling rate (also referred to as throughput) in terms 
of number of samples processed per second. The critical 
path of a combinational logic circuit is defined as the 
longest path between inputs and out puts, where the length 
of a path is proportional to its computation time. DSP 
systems generally are implemented using sequential 
circuits, where the critical paths are defined as the longest 
path between any two shortage elements (or delay 
elements). The critical path computation time determines 
the minimum feasible clock period of DSP system. The 
latency is defined as the difference between the time an 
output is generated and the time at which its corresponding 
input was received by the system. 
 

     For system containing combinational logic only, latency 
is usually represented in terms of absolute units, or the 
number of gate delays; for sequential systems, latency is 
usually represented in terms of number of clock cycles. 
Generally, the clock rate of a DSP system is not the same as 
its sampling rate. DSP algorithms are described using 
mathematical formulations at a higher level where it is more 
important to specify the functionality of the system than the 
order and structure of the internal operations. For 
architectural design, these mathematical formulations need 
to be converted to behavioral description languages or 
graphical representations. 
 
     The behavioral description languages include applicative 
languages, prescriptive languages, and descriptive 
languages. The applicative languages represent a set of 
equations that are satisfied by the variables in the algorithm, 
rather than a sequence of actions (assignments to be carried 
out, i.e., the order of the assignment statements is not 
important). Applicative languages are popular for the 
description of DSP systems. The prescriptive languages 
explicitly specify the order of the assignment statements 
some examples of these types of languages include high 
level programming languages such as Pascal, c, or fortan. 
More recently, many applications are being defined using 
descriptive languages that represent the structure of a DSP 
system. Examples of these are the hardware description 
languages such as verilog or VHDL.  
 
     Graphical are efficient for investigating and analyzing 
data flow properties of DSP algorithms and for exploiting 
the inherent parallelism among different subtasks. More 
importantly, graphical representations can be used to map 
DSP algorithms to hardware implementations. Hence, these 
representations can bridge the gap between algorithmic 
descriptions and structural implementations. The absolute 
measure of the performance metrics of DSP systems, area, 
speed, power, and round off noise cannot be obtained 
without the knowledge of the supporting technology in 
which the system is implemented. However, the graphical 
representations exhibit all the parallelism and data-driven 
properties of the system, and provide insight into space and 
time trade-offs. With graphical representations, the 
architectural design space can be explored and an 
appropriate architecture can be selected in a technology-
independent manner. 
 
     This section addresses four types of graphical 
representation of DSP algorithms; these include block 
diagram, signal flow graph (SFG), data flow-graph (DFG) 
and dependence graph (DG) representations, all of which 
are described by directed graphs. These representations 
describe the algorithms at various levels of abstraction. In 
general, the DG exhibits the inherent parallelism and data-
flow constraints in an algorithm to the maximum extend and 
have the least structural bias; the parallelism in a DG can be 
exploited in various ways by mapping it to SFGH or DFG. 
In practice, DG is used for systolic array design. SFG and 
DFG are used for analyzing structural properties and to 
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explore architectural alternatives using high-level 
transformations. 

Table 1: Typical DSP Algorithms 

 
 

3. ITERATION BOUND 
Many DSP Algorithms such as recursive and adaptive 
digital Filters contain feedback loops, which impose an 
inherent fundamental lower bound on the achievable 
iteration or sample period. This bound is Referred to as the 
iteration period bound, or simply the iteration bound. The 
iteration bound is a characteristic of the representation of an 
algorithm in the form of a data flow graph (DFG). Different 
representation of the same algorithm may lead to different 
iteration bound. It is not possible to achieve an iteration 
period less than the iteration bound even when infinite 
processors are available.  

     A DSP program is often represented using a DFG, which 
is a directed graph (i.e. each edge has a distinct direction) 
that describes the program. DFG consists of a set of nodes 
and edges. The edges represented communication between 
the nodes, and each edge has a nonnegative number of 
delays associated with it. An iteration of a node is the 
execution of the node exactly once, and an iteration of the 
DFG is the execution of each node in the DFG exactly 
once. Each edge in a DFG describes a precedence 
constraint between two nodes. This precedence constraint is 
an intra-iteration precedence constraint if the edge has zero 
delays or an inter-iteration precedence constraint if the edge 
has one or more delays. Together, the intra-iteration and 
inter-iteration precedence constraints specify the order in 
which the nodes in the DFG can be executed. 

     A DFG can be classified as non-recursive or recursive. 
A non-recursive DFG contains no loops, while a recursive 
DFG contains at least one loop. A recursive DFG has a 

fundamental limit on how fast the underlying DSP program 
can be implemented in hardware. This limit, called the 
�iteration bound� T∞, holds regardless of the computing 
power available for the implementation of the DSP 
program. 

     In other words, the loop bound of the critical loop is the 
iteration bound of the DSP program, which is the lower 
bound on the iteration or sample period of the DSP 
program regardless of the amount of computing resources 
available.  Number of loops in a DFG can be exponential 
with respect to the number of nodes. 

     To compute iteration bound in polynomial time, two 
algorithms will be developed 

•  Longest path matrix algorithm 

•  Minimum cycle mean algorithm 

3.1 A. DATA-FLOW GRAPH REPRESANTATION 
 
     DSP programs are considered to be non-terminating 
programs that run from time index n=0 to time n=∞.For 
example, a DSP program that computes Y(n)=aY(n-
1)+X(n) represents the following program: 

For  n=0 to  ∞ ,  Y(n)=aY(n-1)+X(n)        (2)                

 
Fig.  1  Graphica l  representa t ion 

 
Fig.  2  Data Flow Graph 
(The numbers in parentheses are the execution 
t imes for  the  nodes)  
 
     The input  to  this DSP program is the 
sequence X (n)  for  n=0,  1 ,  2, . . . . and the initial 
condition Y(-1). The output is the sequence Y (n) for n=0, 
1, 2, . . . .  
 
     A DSP program is often represented using a DFG, which 
is a directed graph (i.e., each edge has distinct direction) 
that describes the program. For example, the program 
Y(n)=aY(n-1)+X (n) is graphically represented in fig 1. A 
simplified version of this program is shown in fig 2. The 
structure in fig 2 is a DFG, which consists of a set of nodes 
and edges.  
      
     The nodes represent tasks or computations (the node A 
represents addition and the node B represents 
multiplication), and each node has an execution time 
associated with it. The edges represent communication 
between the nodes, and each edge has a nonnegative 
number of delays associated with it. In our example, the 



Int. J. Advanced Networking and Applications                                                                                                 1563 
Volume:04  Issue:02 Pages: 1560-1567   (2012)    ISSN : 0975-0290. 
 

 

edge A�B has zero delays and the edge B�A has one 
delay. An iteration of a node is the execution of the node 
exactly once, and an iteration of the DFG is the execution 
of each node in the DFG exactly once. Each edge in a DFG 
describes a precedence constraint between two nodes. This 
precedence constraint is an intra-iteration precedence 
constraint if the edge has zero delays or an inter-iterations 
precedence constraint if the edge has one or more delays. 
Together, the intra-iteration and inter-iteration precedence 
constraints specify the order in which the nodes in the DFG 
can be executed.  

 
     The edge from A to B in fig 2 enforces the intra-iteration 
precedence constraint, which states that the k-th iteration of 
A must be executed before the k-th iteration of B. The edge 
from B to A enforces the inter-iteration precedence 
constraint, which states that the k-th iteration of B must be 
executed the (k+1)-th iteration of A. Let Xk denote the k-th 
iteration of the node X. When it is important to distinguish 
between intra-iteration and inter-iteration precedence 
constraints, an intra-iteration precedence constraint is 
denoted using a single arrow such as Ak�Bk and inter- 
iteration precedence constraint is denoted using a double 
arrow such as Bk=Ak+1. Otherwise, all precedence 
constraints are denoted using single arrows. The critical 
path of a DFG is defined to be the path with the longest 
computation time among all paths that contain zero delays. 
The critical path in the DFG in fig 2 is the path A�B, 
which requires 6 u.t. The DFG in fig 3 contains several 
paths with no delays. The maximum computation time 
among these paths is 5 u.t.(the two paths 6�3�2�1 and 
5�3�2�1 are both critical paths), so the critical path 
computation requires 5 u.t. The critical path is the longest 
path for combinational rippling computation time for 1 
iteration of the DFG. 

 
     A DFG can be classified as non-recursive or recursive. 
A non-recursive DFG contains no loops, while a recursive 
DFG contains at least one loop. For example, an FIR filter 
is non-recursive, while the DFG in fig 3 is recursive 
because it contains the loop A�B�A. A recursive DFG 
has a fundamental limit on how fast the underlying DSP 
program can be implemented in hardware. This limit, called 
the iteration bound T∞ [1][2], holds regardless of the 
computing power available for the implementation of the 
DSP program. 

 
Fig. 3 A DFG with three loops that have loop bounds of 4/2 
u.t.,5/3 u.t., and 5/4 u.t. The iteration bound for this DFG is 
T∞=2 u.t.  
 

     A straightforward technique for finding the iteration 
bound of a DFG is to locate all loops and directly compute 
T∞ using (3); however, the number of loops in a DFG can 
be exponential with respect to the number of nodes, so this 
technique can require long execution times. Three 
techniques have been developed for computing T∞ in 
polynomial time, namely the longest path matrix algorithm, 
the minimum cycle mean algorithm, and the negative cycle 
detection algorithm.  

4.  ALGORITHMS FOR COMPUTING 
ITERATION BOUND   
The two iteration-bound algorithms described in this 
section are demonstrated using the DFG in fig 3. This DFG 
has three loops: L1 = 1�4�2�1 with loop bound 4/2 u.t., 
loopL2= 1�5�3�2�1 with loop bound 5/3 u.t., and loop 
L3=1�6�3�2�1 with loop bound 5/4 u.t. Therefore, the 
iteration bound of this DFG is 
         T∞=max {4/2,  5 /3 ,  5 /4}= 2 u. t .  
 

4.1 Longest path matrix algorithm 
     In the longest path matrix (LPM) algorithm, a series of 
matrices is constructed, and the iteration bound is found by 
examining the diagonal elements of the matrices. Let d be 
the number of delays in the DFG. These matrices, L(m) , m= 
1, 2, ��. , d, are constructed such that the value of the 
element, l (m,i,j) is the longest computation time of all 
paths from delay element di to delay element dj that pass 
through exactly m-1 delays (not including di and dj). If no 
such paths exists, then l(m,i,j)=-1. Note that longest path 
between any two nodes can be computed using any path 
algorithms (bellman-ford, floyd-warshall algorithms). For 
example, to determine l (1,3,1) for the DFG in fig 3, all 
paths from the delay element d3 to the delay element d1 that 
pass through exactly zero delay elements must be 
considered. There is one such path, namely, the path d3 � 
n5 � n3 � n2 � n1 � d1. This path has computation time 
5, so l(1,3,1)=5. To determine l(1,4,3), we note that there 
are no paths from the delay element d4 to the delay element 
d3 that pass through zero delay elements, so l(1,4,3)=-1. 
After determining the rest of the elements of L(1)  , we find 

        
 
L( 1 )=    
 

          
 
The higher order matrices, L(m) , m= 2, 3, �.., d, do not 
need to be determined directly from the DFG. Rather, they 
can be recursively computed according to the rule   
L((m+1), i, j) = max (-1, l (1,I, k)+l(m, k, j)), 
                                       k€K                                                  (4.1)  
Where K is the set of integers k in the interval [1,d] such 
that neither l (1,I, k)=-1 nor l (m, k, j)=-1 holds. For 
example, to compute l (2,2,1), the first step is to find the set 
K from the possible set {1, 2, 3,4}. The value 3 is in K 
because l (1,2,3)=0 and l (1,3,1)=5, and the values k=1, 2, 4 
are not in K because at least one of l(1,2,k) or l(1,k,1) is 

-1   0  -1  -1 
 4  -1   0  -1 
 5  -1  -1   0 
 5  -1  -1  -1 
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equal to -1 for each of these. Using K={3}, the value of l 
(2,2,1) can be computed as 
 

l (2,2,1)  = max(-1,l(1,2,k)+l(1,k,1)) 
                                                         k€{3} 

                                  = max (-1,0+5) = 5. 
Computing the remaining values of l (2,i, j) results in 

 
       L(2)  = 
 
 
 ����(4.3) 

 
     While L(2)   is computed using only L(1)  , the matrix L(3)   
is computed using both L(1)  and L(2)  .To compute l (3,3,3), 
K={1} because l (1,3,1)=5 and l (2,1,3)=0, and for the 
values of k=2,3,4, at least one of l (1,3,k) or l (3,k, 3) is 
equal to -1. The value of l (3,3,3) is 

l (3,3,3)  = max (-1,l(1,3,k)+l(2,k,3)) 
                                                    k€{1} 

                              = max (-1,5+0)=5. 
Computing the rest of L(3)  and  L(4)   results in 

 
 
       L(3)  = 
 �����(4.4) 
 
And      
 
      L(4)  =        
 ..����(4.5) 
 

 
Once the matrices L(m)  have been computed, the iteration 
bound can be determined as          

T∞ = max {l (m, i, i)/m}  
                                                      i,m€{1,2,�.d}                                                  (4.2) 
Which for this example is 
T∞= {4/2, 4/2, 5/3, 5/3, 5/3, 8/4, 8/4, 5/4, 5/4} = 2 

 
     The LPM algorithm works because the value l (m, i, i) 
represents the longest computation time of all loops that 
have m delays and contain the delay element di. By taking 
the maximum of l (m, i, i)/m for all possible values of I and 
m, we find the maximum loop bound of all loops in the 
DFG, which is the iteration bound. 
 
     The time complexity of computing L(k+1)  from L(1)  and 
L(k)  is O (d3) since there are d2  elements in L(k+1)  and each 
computation has time complexity O (d). Therefore, 
computing L(d)  from L(1)  has time complexity  O(d4). 
Although we determined L(1)   by inspection, an algorithm 
with time complexity O(de) is given in above for finding 
L(1) , where d and e are the number of delays and edges in 
the DFG, respectively. Hence, the time complexity of the 
LPM algorithm of computing the iteration bound is O(d4  
+de).  

4.2 The minimum cycle mean algorithm 
     The minimum cycle mean (MCM) algorithm reduces the 
problem of determining the iteration bound to the problem 
of finding the MCM of a graph. Here we compute the 
MCM efficiently by using below technique. Recall the 
terms �cycle� and �loop� can be used interchangeably. 

 
     The algorithm described in this section uses the concepts 
of cycle mean, the maximum cycle mean, and the MCM. 
The cycle mean m(c) of a cycle c is the average length of 
the edges in c, which can be found by simply taking the sum 
of the edge lengths and dividing by the number of edges in 
the cycle. The MCM λmin is simply the minimum value of 
all of the cycle means, i.e.,  

λmin   = minc m(c).   (4.3) 
Similarly, the maximum cycle mean λmax is 

λmax = maxc m(c)      (4.4) 

 
Fig. 4 The graph Gd for the DFG in Fig. 3 

 
Fig. 5 The graph  Gd 
 
     The cycle means of a new graph Gd are used to compute 
the iteration bound, where Gd can be found from the DFG 
for which we are computing the iteration bound (call this 
DFG G). If d is the number of delay elements in G, then the 
graph Gd has d nodes where each node corresponds to one 
of the delays in G.  The weight w (i,j) of the edge from the 
node I to the node j in Gd is the longest path length among 
all paths in G from the delay di  to the delay dj that do not 
pass through delays. If no zero-delay path exists from the 
delay di to the delay dj, then the edge i� j does not exist in 
Gd . 
 
     The graph Gd for the DFG in Fig 3 is shown in Fig 4. 
Note that constructing Gd is essentially the same as 
constructing the matrix L1 in the LPM algorithm discussed 
above. 
 
     The sum of the edge weights in a cycle c in the in the Gd 
is the maximum computation time of all cycles in G that 
contain the delays represented by the nodes in the cycle c. 
This is because the edge weights in Gd are the maximum 
computations times between the delays in G. For example 

4   -1    0   -1    
5    4   -1    0 
5    5   -1   -1 
-1   5   -1   -1 

5   4  -1   0     
8   5   4  -1 
9   5   5  -1 
9  -1   5  -1 

  8   5   4  -1    
  9   8   5   4 
10   9   5   5 
10   9  -1   5 
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there are two cycles that contains the delays Dά and Dβ in 
the graph G in Fig 6, and these cycles have computation 
times of 6 u.t. and 4 u.t. The corresponding graph Gd in fig 
7 has one cycle that passes through the nodes corresponding 
to Dα and Dβ. The sum of the edge weights in this cycle is 6, 
which is the maximum computation time of two cycles in G 
in fig 6. In Gd,, the number of edges in a cycle equals the 
number of nodes in the cycle, and this equals the number of 
delays in the cycle in G. Therefore, the cycle mean of a 
cycle c in 
               Max computation time of all cycles 
Gd =           in G that contain the delays in c 
         The number of delays in these cycles in G 
 
     This is the maximum cycle bound of the cycles in G that 
contain the delays in the cycle c. The maximum cycle mean 
of Gd   is the maximum cycle bound of all cycles in G, 
which is the iteration bound of G. 

 
Fig. 6 A graph G with two cycles that contain the delays 
D� and Dß 
     
     To compute the maximum cycle mean of Gd, the graph 
Gd  is constructed from  Gd  by simply multiplying the 
weights of the edges by -1, i.e.,  Gd has the same topology 
as Gd and the weights w(i,j) of the edge  i�j in the Gd are 
given by w(I,j)=-w(I,j), where w(I,j) is the  weight of edge  
i�j  in Gd . The graph Gd for the DFG in Fig 3  is given in 
Fig 4. The maximum cycle mean of Gd is simply the MCM 
of Gd  and multiplying it by -1. 

 
Fig. 7 The Corresponding graph Gd 

 
     The MCM of Gd is found by first constructing the series 
of d+1 vectors, f(m),m=0,1,�.d, which are each of 
dimension dX1. An arbitrary reference node is chosen in Gd 
(call this node s). The initial vector f(0)  is formed by setting 
f(0)(s)=0 and setting the remaining entries of f(0)   to α. If 
node 1 is chosen as the reference node for the graph Gd  in 
Fig 4, then 

 
                    0 
f(0)  =            α 
                     α 
                     α 

The remaining vectors, f(m),m=1,2,,�.d are respectively 
computed according to    

                    f(m)(j)= min(f(m-1)(i)+w(i,j))   
 
                            i∈ I                                                                       

where w(i,j) is the  weight of the edge i�j in Gd and I is the 
set of nodes in Gd such that there exists an edge from node i 
to node j (i � j) . This series of vectors found from Gd in 
Fig 4 is 

f(1) =   f(2) =   

f(3) =  f(4) =  
 

Table 2: Values of f(4)(i)-f(m)(i) 
                                 4-m 

                                  for 1<=I<=4 and 0<=m<=3 

 
For example, f(4)(1) is computed as  
f(4) (1)= min( f(3) (2)-w(2,1) , f(3) (3)-w(3,1) , f(3) (4)-w(4,1)) 
           = min(-4,-4,∞-5,0-5) = -8. 
 
From the vectors f(m) , m= 0,1,2�.d the iteration bound can 
be computed as 
 
T∞ =-mini∈ {1,2,�..,d}     max          f(d)(i)-f(m)(i) 
                               m∈ {0,1,�.d-1}       d-m 
 
 
in our example, d=4,  
 
Table 2 shows the values of   
  f(4)(i)-f(m)(i)                 
        4-m 
 
For 1≤i≤4 and 0 ≤m ≤3. In some cases we may encounter 
f(d)(i)-f(m)(i)= ∞-∞. In this case ∞-∞ should be treated as 
zero. For example, f(4)(4)-f(1)(4)= ∞-∞, so  the value (∞-
∞)/3=0/3=0 is given for i=4 and m=1 as shown in the Table 
2. 
T∞=-min {-2, -1, -2, ∞}=2 
 
 
 

 M=0 M=1 M=2 M =3 Max0<=m<=3 
f(4)(i)-f(m)(i) 
        4-m  

I=1 -2 -α -2 -3 -2 

I=2 -α -5/3 -α -1 -1 

I=3 -α -α -2 -α -2 

I=4 Α �α α �α  α �α α Α 

-8 
-5 
-4 
∞ 

-5 
-4 
∞ 
0 

-4 
∞ 
0 
∞ 

∞ 
0 
∞ 
∞
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5. RESULTS 

5.1 Longest path matrix algorithm technique 
     In the longest path matrix (LPM) algorithm, a series of 
matrices is constructed, and the iteration bound is found by 
examining the diagonal elements of the matrices. As 
explained in the earlier section, we get the LPM output as 
shown below. 
 
     The required result iteration bound for the above DFG is 
obtained as shown below. 
Step 1: Get the Menu using GUI command:  
Here, the menu pops up with all the options required for the 
project analysis.  
Step 2: Click the circuit file tab:  
Here, the input data circuit tab appears, where we enter 
input. 
Step 3: Enter the input:  
Here the input itdata1 is the m.file which has the input DFG 
(shown in fig. 3) in the form of matrix. 
Step 4: Click the ITB using LPM algorithm tab. 
After the above step, we get a connection matrix 
corresponding to the DFG of the circuit. It has the 
formation of the tree branch where the starting node 
 

 
Fig. 8 GUI for the whole module 
 
is any delay element and terminated with any other delay 
element and without having any delay element in between. 
Step 5: The Iteration Bound is found as shown below (fig. 
9) 
Thus the 1st technique is used as shown above for the input 
1.  

 
Fig. 9 Iteration bound result for input 1, using LPM 
algorithm 
 

5.2. Minimum cycle mean algorithm technique 
     The minimum cycle mean (MCM) algorithm reduces the 
problem of determining the iteration bound to the problem 
of finding the MCM of a graph. Here we compute the 
MCM efficiently by using the technique as explained in the 
section 4. Recall the terms �cycle� and �loop� can be used 
interchangeably. 

5.3 Multi rate to single rate synthesis 
 As explained in the section 4, the step two is used to 
compute the iteration bound of Multi rate DFG. The 
process is to construct a SRDFG that is equivalent to the 
MRDFG & Compute the iteration bound of the equivalent 
SRDFG using the LPM algorithm, or the MCM algorithm. 

 
     Here the input mrdfg1 is the m.file which has the input 
DFG (shown in fig 10) in the form of matrix and the k 
values as explained in the section 4. 

 
Fig. 10 A multi-rate DFG 

 
Fig. 11 An equivalent SRDFG for the MRDFG in fig 10 
  
     The equivalent SRDFG is used as the input in the matrix 
format and the edges are reduced using edge degeneration 
algorithm, which will not alter the output iteration bound. 
The table 5.1 below shows the number of edges reduced 
after using the algorithm. 

 
Table 3 

                      Total 
Number of edges before edge 
degeneration 

                       24 

Number of edges after edge 
degeneration 

                       16 

 
Total decrease in percentage = [100-{(16/24)*100}] 

    = 33.33% 

6. CONCLUSION 
At present the challenge of designer is developing the 
complex algorithms in the chip is a very tedious task, 
reason is it has to meet the specification requirements. For 
one particular purpose there are number of algorithms 
which could complete the task but there is no information 
available about how much speed maximally we can achieve 
if these algorithms applied to the physical realization. 
 
     The proposed tool can solve the problem of designer by 
providing a very easy means to estimate the iteration bound 
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corresponding to pick up algorithms. Not only that if there 
is a requirement of enhancement of the speed in future, this 
can be taken care at the beginning itself and as a result cost 
effective solution can be generated within the short period. 
There are number of applications where multi rate circuit is 
being used, it is difficult to analyze such kind of the multi 
rate system. Tool has been developed in the presented work 
to synthesize the multi rate circuit by the single rate even 
with the quality of having less number of edges. It is 
expected that proposed solution will provide the help to 
researchers and professionals who wants to have the best 
speed facility in the circuit. 
     Using unfolding technique, design of the circuit can 
have the speed equal to iteration bound, if the original 
circuit is having a fractional value of iteration bound. 
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