
Int. J. Advanced Networking and Applications 1560
Volume:04 Issue:02 Pages: 1560-1567 (2012) ISSN : 0975-0290.

Highly Efficient Design of DSP Systems Using
Electronic Design Automation Tool to Find

Iteration Bound
G. S. Satish Kumar

M.Tech SP&VLSI, Department of Electronics and Communication, Jain University, Bangalore
Email: gssatishk629@gmail.com

Hari Krishna Moorthy
Asst. Professor, Department of Electronics and Communication, Jain University, Bangalore

Email : locushari@gmail.com

---ABSTRACT--
Digital signal processing algorithms are repetitive in nature. These algorithms are described by iterative data flow
graph (DFG) where nodes represent tasks and edges represent communication. Execution of all nodes of the DFG
once completes iteration. Successive iteration of any node are executive with a time displacement referred to as the
iteration period. For all recursive signal processing algorithms, there exists an inherent fundamental lower bound on
the iteration period referred to as the iteration period bound or the iteration period. This bound is fundamental to an
algorithm and is independent of the implementation architecture. In other words it is impossible to achieve an
iteration period less than the bound even when infinite processors are available to execute the recursive algorithm.
 Iteration bound need to be determined in rate-optimal scheduling of iterative data flow graph. The iteration bound
determination has to pre-order repeatedly in the scheduling phase of the high level synthesis. In recursive constrained
scheduling a given processing algorithm is scheduled to achieve the minimum iteration period using the given
hardware resources. In order to execute operation of the processing algorithm in parallel, the required number of
processors or functional units required to execute the operation in parallel may be larger than the number of
available resources. Generally the precedence to be assigned is not unique. Hence the iteration bound should be
determined for every possible precedence to check which precedence leads to the final schedule with the minimum
iteration period. Consequently the iteration bound may have to be computed many times and it is important to
determine the iteration bound in minimum possible time.

Keywords � DSP Algorithms, DFG, Iteration Bound, LPM, MCM.
--
Date of Submission: 01-09-2012 Date Revised: 02-09-2012 Date of Acceptance: 09-09-2012
--

1. INTRODUCTION

Digital signal processing(DSP) is used in numerous
application such as video compression, portable video
system computers, digital audio, multimedia and wireless
communication systems, radar imaging, acoustic beam
forming, global positioning system, biomedical signal
processing. The field of DSP has always been driven by the
advance in DSP application and in scaled VLSI
technologies. Therefore at any given time, DSP applications
impose several challenges on the implementation of the
DSP system. These implementations must satisfy the
enforced sampling rate constraints of the real time DSP
applications and must require less space and power
consumption.

 Methodologies needed to design custom or semi-custom
VLSI circuit for these applications. DSP computation is
different from general purpose computation in the sense
that DSP programs are non- terminating program. In DSP
computation, the same program is executed repetitively on
an infinite time series. The non-terminating nature can be

exploited to design more efficient DSP system by
exploiting the dependency of tasks both within iteration and
among multiple iterations.

 Furthermore long critical path in DSP algorithms limit
the performance of DSP system. These algorithms need to
be transformed for design or �high speed� or �low-area� or
�low-power� implementation. VLSI DSP is field of design
efficient architecture, algorithms and circuit, which can be
operated with either less area or power consumption or with
higher speed or lower round off noise. High level
architectural transformation that can be used to design
families of architectures for a given algorithm. These
transformation include �pipelining� �Retiming� �unfolding�
�Folding� and �systolic array� design methodology.

 The dramatically different sample rate and computation
requirements necessitate different architecture
considerations for implementations of DSP algorithms. For
example, in a speech application a time- multiplexed
architecture may be preferred where many algorithms
operations are mapped to the same hardware. However the
high speed requirement in video application can meet by

Int. J. Advanced Networking and Applications 1561
Volume:04 Issue:02 Pages: 1560-1567 (2012) ISSN : 0975-0290.

one to one mapping of algorithm operations to processors.
Thus it is important to know the design technologies not
just to a single architecture but a family of architecture out
of which an appropriate architecture can be selected for a
specific purpose.
 Two important features that distinguish DSP from other
general purpose computations are the

• Real time throughput requirement.
• Data driven property.

The hardware should be designed to meet the tight
throughput constraint of the real time processing where
new input samples need to be processed as they are
received periodically from the signal source as opposed to
first storing them in buffers and then processing them in
batch mode. If the throughput of a system is less than the
required sample rate, the new inputs need to be stalled (or
buffered), which requires an infinite length buffer.
However, once the sample rate is met by the hardware,
there is no advantage in making the computation any faster.

 The second important attribute of signal processing
systems is its data driven property, implied by the fact the
any subtasks or computations in a DSP system can be
performed once all the input data are available. In the sense,
these systems are synchronized by the flow of data, instead
of the system clock. This enables the use of asynchronous
circuit for DSP system where no global clock is required.

2. DSP ALGORITHMS
DSP algorithms are described by non-terminating programs
which execute the same code repetitively. For example, a 3-
tap FIR digital filter described by the non-terminating
program.

y(n)=ax(n)+bx(n-1)+cx(n-2); for n=1 to n=α (1)

 Execution of all the computations in the algorithms once
is referred to as iteration. The iteration period is the time
required for execution of an iteration of the algorithm. The
iteration rate is the reciprocal of the iteration period. During
each iteration, the 3-tap FIR filter equation (1) above
processes one input signal, completes 3 multiplication and 2
addition operations (in serial or in parallel), and generates
one output sample. DSP systems are also characterized by
the sampling rate (also referred to as throughput) in terms
of number of samples processed per second. The critical
path of a combinational logic circuit is defined as the
longest path between inputs and out puts, where the length
of a path is proportional to its computation time. DSP
systems generally are implemented using sequential
circuits, where the critical paths are defined as the longest
path between any two shortage elements (or delay
elements). The critical path computation time determines
the minimum feasible clock period of DSP system. The
latency is defined as the difference between the time an
output is generated and the time at which its corresponding
input was received by the system.

 For system containing combinational logic only, latency
is usually represented in terms of absolute units, or the
number of gate delays; for sequential systems, latency is
usually represented in terms of number of clock cycles.
Generally, the clock rate of a DSP system is not the same as
its sampling rate. DSP algorithms are described using
mathematical formulations at a higher level where it is more
important to specify the functionality of the system than the
order and structure of the internal operations. For
architectural design, these mathematical formulations need
to be converted to behavioral description languages or
graphical representations.

 The behavioral description languages include applicative
languages, prescriptive languages, and descriptive
languages. The applicative languages represent a set of
equations that are satisfied by the variables in the algorithm,
rather than a sequence of actions (assignments to be carried
out, i.e., the order of the assignment statements is not
important). Applicative languages are popular for the
description of DSP systems. The prescriptive languages
explicitly specify the order of the assignment statements
some examples of these types of languages include high
level programming languages such as Pascal, c, or fortan.
More recently, many applications are being defined using
descriptive languages that represent the structure of a DSP
system. Examples of these are the hardware description
languages such as verilog or VHDL.

 Graphical are efficient for investigating and analyzing
data flow properties of DSP algorithms and for exploiting
the inherent parallelism among different subtasks. More
importantly, graphical representations can be used to map
DSP algorithms to hardware implementations. Hence, these
representations can bridge the gap between algorithmic
descriptions and structural implementations. The absolute
measure of the performance metrics of DSP systems, area,
speed, power, and round off noise cannot be obtained
without the knowledge of the supporting technology in
which the system is implemented. However, the graphical
representations exhibit all the parallelism and data-driven
properties of the system, and provide insight into space and
time trade-offs. With graphical representations, the
architectural design space can be explored and an
appropriate architecture can be selected in a technology-
independent manner.

 This section addresses four types of graphical
representation of DSP algorithms; these include block
diagram, signal flow graph (SFG), data flow-graph (DFG)
and dependence graph (DG) representations, all of which
are described by directed graphs. These representations
describe the algorithms at various levels of abstraction. In
general, the DG exhibits the inherent parallelism and data-
flow constraints in an algorithm to the maximum extend and
have the least structural bias; the parallelism in a DG can be
exploited in various ways by mapping it to SFGH or DFG.
In practice, DG is used for systolic array design. SFG and
DFG are used for analyzing structural properties and to

Int. J. Advanced Networking and Applications 1562
Volume:04 Issue:02 Pages: 1560-1567 (2012) ISSN : 0975-0290.

explore architectural alternatives using high-level
transformations.

Table 1: Typical DSP Algorithms

3. ITERATION BOUND
Many DSP Algorithms such as recursive and adaptive
digital Filters contain feedback loops, which impose an
inherent fundamental lower bound on the achievable
iteration or sample period. This bound is Referred to as the
iteration period bound, or simply the iteration bound. The
iteration bound is a characteristic of the representation of an
algorithm in the form of a data flow graph (DFG). Different
representation of the same algorithm may lead to different
iteration bound. It is not possible to achieve an iteration
period less than the iteration bound even when infinite
processors are available.

 A DSP program is often represented using a DFG, which
is a directed graph (i.e. each edge has a distinct direction)
that describes the program. DFG consists of a set of nodes
and edges. The edges represented communication between
the nodes, and each edge has a nonnegative number of
delays associated with it. An iteration of a node is the
execution of the node exactly once, and an iteration of the
DFG is the execution of each node in the DFG exactly
once. Each edge in a DFG describes a precedence
constraint between two nodes. This precedence constraint is
an intra-iteration precedence constraint if the edge has zero
delays or an inter-iteration precedence constraint if the edge
has one or more delays. Together, the intra-iteration and
inter-iteration precedence constraints specify the order in
which the nodes in the DFG can be executed.

 A DFG can be classified as non-recursive or recursive.
A non-recursive DFG contains no loops, while a recursive
DFG contains at least one loop. A recursive DFG has a

fundamental limit on how fast the underlying DSP program
can be implemented in hardware. This limit, called the
�iteration bound� T∞, holds regardless of the computing
power available for the implementation of the DSP
program.

 In other words, the loop bound of the critical loop is the
iteration bound of the DSP program, which is the lower
bound on the iteration or sample period of the DSP
program regardless of the amount of computing resources
available. Number of loops in a DFG can be exponential
with respect to the number of nodes.

 To compute iteration bound in polynomial time, two
algorithms will be developed

• Longest path matrix algorithm

• Minimum cycle mean algorithm

3.1 A. DATA-FLOW GRAPH REPRESANTATION

 DSP programs are considered to be non-terminating
programs that run from time index n=0 to time n=∞.For
example, a DSP program that computes Y(n)=aY(n-
1)+X(n) represents the following program:

For n=0 to ∞ , Y(n)=aY(n-1)+X(n) (2)

Fig. 1 Graphica l representa t ion

Fig. 2 Data Flow Graph
(The numbers in parentheses are the execution
t imes for the nodes)

 The input to this DSP program is the
sequence X (n) for n=0, 1 , 2, and the initial
condition Y(-1). The output is the sequence Y (n) for n=0,
1, 2,

 A DSP program is often represented using a DFG, which
is a directed graph (i.e., each edge has distinct direction)
that describes the program. For example, the program
Y(n)=aY(n-1)+X (n) is graphically represented in fig 1. A
simplified version of this program is shown in fig 2. The
structure in fig 2 is a DFG, which consists of a set of nodes
and edges.

 The nodes represent tasks or computations (the node A
represents addition and the node B represents
multiplication), and each node has an execution time
associated with it. The edges represent communication
between the nodes, and each edge has a nonnegative
number of delays associated with it. In our example, the

Int. J. Advanced Networking and Applications 1563
Volume:04 Issue:02 Pages: 1560-1567 (2012) ISSN : 0975-0290.

edge A�B has zero delays and the edge B�A has one
delay. An iteration of a node is the execution of the node
exactly once, and an iteration of the DFG is the execution
of each node in the DFG exactly once. Each edge in a DFG
describes a precedence constraint between two nodes. This
precedence constraint is an intra-iteration precedence
constraint if the edge has zero delays or an inter-iterations
precedence constraint if the edge has one or more delays.
Together, the intra-iteration and inter-iteration precedence
constraints specify the order in which the nodes in the DFG
can be executed.

 The edge from A to B in fig 2 enforces the intra-iteration
precedence constraint, which states that the k-th iteration of
A must be executed before the k-th iteration of B. The edge
from B to A enforces the inter-iteration precedence
constraint, which states that the k-th iteration of B must be
executed the (k+1)-th iteration of A. Let Xk denote the k-th
iteration of the node X. When it is important to distinguish
between intra-iteration and inter-iteration precedence
constraints, an intra-iteration precedence constraint is
denoted using a single arrow such as Ak�Bk and inter-
iteration precedence constraint is denoted using a double
arrow such as Bk=Ak+1. Otherwise, all precedence
constraints are denoted using single arrows. The critical
path of a DFG is defined to be the path with the longest
computation time among all paths that contain zero delays.
The critical path in the DFG in fig 2 is the path A�B,
which requires 6 u.t. The DFG in fig 3 contains several
paths with no delays. The maximum computation time
among these paths is 5 u.t.(the two paths 6�3�2�1 and
5�3�2�1 are both critical paths), so the critical path
computation requires 5 u.t. The critical path is the longest
path for combinational rippling computation time for 1
iteration of the DFG.

 A DFG can be classified as non-recursive or recursive.
A non-recursive DFG contains no loops, while a recursive
DFG contains at least one loop. For example, an FIR filter
is non-recursive, while the DFG in fig 3 is recursive
because it contains the loop A�B�A. A recursive DFG
has a fundamental limit on how fast the underlying DSP
program can be implemented in hardware. This limit, called
the iteration bound T∞ [1][2], holds regardless of the
computing power available for the implementation of the
DSP program.

Fig. 3 A DFG with three loops that have loop bounds of 4/2
u.t.,5/3 u.t., and 5/4 u.t. The iteration bound for this DFG is
T∞=2 u.t.

 A straightforward technique for finding the iteration
bound of a DFG is to locate all loops and directly compute
T∞ using (3); however, the number of loops in a DFG can
be exponential with respect to the number of nodes, so this
technique can require long execution times. Three
techniques have been developed for computing T∞ in
polynomial time, namely the longest path matrix algorithm,
the minimum cycle mean algorithm, and the negative cycle
detection algorithm.

4. ALGORITHMS FOR COMPUTING
ITERATION BOUND
The two iteration-bound algorithms described in this
section are demonstrated using the DFG in fig 3. This DFG
has three loops: L1 = 1�4�2�1 with loop bound 4/2 u.t.,
loopL2= 1�5�3�2�1 with loop bound 5/3 u.t., and loop
L3=1�6�3�2�1 with loop bound 5/4 u.t. Therefore, the
iteration bound of this DFG is
 T∞=max {4/2, 5 /3 , 5 /4}= 2 u. t .

4.1 Longest path matrix algorithm
 In the longest path matrix (LPM) algorithm, a series of
matrices is constructed, and the iteration bound is found by
examining the diagonal elements of the matrices. Let d be
the number of delays in the DFG. These matrices, L(m) , m=
1, 2, ��. , d, are constructed such that the value of the
element, l (m,i,j) is the longest computation time of all
paths from delay element di to delay element dj that pass
through exactly m-1 delays (not including di and dj). If no
such paths exists, then l(m,i,j)=-1. Note that longest path
between any two nodes can be computed using any path
algorithms (bellman-ford, floyd-warshall algorithms). For
example, to determine l (1,3,1) for the DFG in fig 3, all
paths from the delay element d3 to the delay element d1 that
pass through exactly zero delay elements must be
considered. There is one such path, namely, the path d3 �
n5 � n3 � n2 � n1 � d1. This path has computation time
5, so l(1,3,1)=5. To determine l(1,4,3), we note that there
are no paths from the delay element d4 to the delay element
d3 that pass through zero delay elements, so l(1,4,3)=-1.
After determining the rest of the elements of L(1) , we find

L(1)=

The higher order matrices, L(m) , m= 2, 3, �.., d, do not
need to be determined directly from the DFG. Rather, they
can be recursively computed according to the rule
L((m+1), i, j) = max (-1, l (1,I, k)+l(m, k, j)),
 k€K (4.1)
Where K is the set of integers k in the interval [1,d] such
that neither l (1,I, k)=-1 nor l (m, k, j)=-1 holds. For
example, to compute l (2,2,1), the first step is to find the set
K from the possible set {1, 2, 3,4}. The value 3 is in K
because l (1,2,3)=0 and l (1,3,1)=5, and the values k=1, 2, 4
are not in K because at least one of l(1,2,k) or l(1,k,1) is

-1 0 -1 -1
 4 -1 0 -1
 5 -1 -1 0
 5 -1 -1 -1

Int. J. Advanced Networking and Applications 1564
Volume:04 Issue:02 Pages: 1560-1567 (2012) ISSN : 0975-0290.

equal to -1 for each of these. Using K={3}, the value of l
(2,2,1) can be computed as

l (2,2,1) = max(-1,l(1,2,k)+l(1,k,1))
 k€{3}

 = max (-1,0+5) = 5.
Computing the remaining values of l (2,i, j) results in

 L(2) =

 ����(4.3)

 While L(2) is computed using only L(1) , the matrix L(3)
is computed using both L(1) and L(2) .To compute l (3,3,3),
K={1} because l (1,3,1)=5 and l (2,1,3)=0, and for the
values of k=2,3,4, at least one of l (1,3,k) or l (3,k, 3) is
equal to -1. The value of l (3,3,3) is

l (3,3,3) = max (-1,l(1,3,k)+l(2,k,3))
 k€{1}

 = max (-1,5+0)=5.
Computing the rest of L(3) and L(4) results in

 L(3) =
 �����(4.4)

And

 L(4) =
 ..����(4.5)

Once the matrices L(m) have been computed, the iteration
bound can be determined as

T∞ = max {l (m, i, i)/m}
 i,m€{1,2,�.d} (4.2)
Which for this example is
T∞= {4/2, 4/2, 5/3, 5/3, 5/3, 8/4, 8/4, 5/4, 5/4} = 2

 The LPM algorithm works because the value l (m, i, i)
represents the longest computation time of all loops that
have m delays and contain the delay element di. By taking
the maximum of l (m, i, i)/m for all possible values of I and
m, we find the maximum loop bound of all loops in the
DFG, which is the iteration bound.

 The time complexity of computing L(k+1) from L(1) and
L(k) is O (d3) since there are d2 elements in L(k+1) and each
computation has time complexity O (d). Therefore,
computing L(d) from L(1) has time complexity O(d4).
Although we determined L(1) by inspection, an algorithm
with time complexity O(de) is given in above for finding
L(1) , where d and e are the number of delays and edges in
the DFG, respectively. Hence, the time complexity of the
LPM algorithm of computing the iteration bound is O(d4
+de).

4.2 The minimum cycle mean algorithm
 The minimum cycle mean (MCM) algorithm reduces the
problem of determining the iteration bound to the problem
of finding the MCM of a graph. Here we compute the
MCM efficiently by using below technique. Recall the
terms �cycle� and �loop� can be used interchangeably.

 The algorithm described in this section uses the concepts
of cycle mean, the maximum cycle mean, and the MCM.
The cycle mean m(c) of a cycle c is the average length of
the edges in c, which can be found by simply taking the sum
of the edge lengths and dividing by the number of edges in
the cycle. The MCM λmin is simply the minimum value of
all of the cycle means, i.e.,

λmin = minc m(c). (4.3)
Similarly, the maximum cycle mean λmax is

λmax = maxc m(c) (4.4)

Fig. 4 The graph Gd for the DFG in Fig. 3

Fig. 5 The graph  Gd

 The cycle means of a new graph Gd are used to compute
the iteration bound, where Gd can be found from the DFG
for which we are computing the iteration bound (call this
DFG G). If d is the number of delay elements in G, then the
graph Gd has d nodes where each node corresponds to one
of the delays in G. The weight w (i,j) of the edge from the
node I to the node j in Gd is the longest path length among
all paths in G from the delay di to the delay dj that do not
pass through delays. If no zero-delay path exists from the
delay di to the delay dj, then the edge i� j does not exist in
Gd .

 The graph Gd for the DFG in Fig 3 is shown in Fig 4.
Note that constructing Gd is essentially the same as
constructing the matrix L1 in the LPM algorithm discussed
above.

 The sum of the edge weights in a cycle c in the in the Gd
is the maximum computation time of all cycles in G that
contain the delays represented by the nodes in the cycle c.
This is because the edge weights in Gd are the maximum
computations times between the delays in G. For example

4 -1 0 -1
5 4 -1 0
5 5 -1 -1
-1 5 -1 -1

5 4 -1 0
8 5 4 -1
9 5 5 -1
9 -1 5 -1

 8 5 4 -1
 9 8 5 4
10 9 5 5
10 9 -1 5

Int. J. Advanced Networking and Applications 1565
Volume:04 Issue:02 Pages: 1560-1567 (2012) ISSN : 0975-0290.

there are two cycles that contains the delays Dά and Dβ in
the graph G in Fig 6, and these cycles have computation
times of 6 u.t. and 4 u.t. The corresponding graph Gd in fig
7 has one cycle that passes through the nodes corresponding
to Dα and Dβ. The sum of the edge weights in this cycle is 6,
which is the maximum computation time of two cycles in G
in fig 6. In Gd,, the number of edges in a cycle equals the
number of nodes in the cycle, and this equals the number of
delays in the cycle in G. Therefore, the cycle mean of a
cycle c in
 Max computation time of all cycles
Gd = in G that contain the delays in c
 The number of delays in these cycles in G

 This is the maximum cycle bound of the cycles in G that
contain the delays in the cycle c. The maximum cycle mean
of Gd is the maximum cycle bound of all cycles in G,
which is the iteration bound of G.

Fig. 6 A graph G with two cycles that contain the delays
D� and Dß

 To compute the maximum cycle mean of Gd, the graph
Gd is constructed from Gd by simply multiplying the
weights of the edges by -1, i.e., Gd has the same topology
as Gd and the weights w(i,j) of the edge i�j in the Gd are
given by w(I,j)=-w(I,j), where w(I,j) is the weight of edge
i�j in Gd . The graph Gd for the DFG in Fig 3 is given in
Fig 4. The maximum cycle mean of Gd is simply the MCM
of Gd and multiplying it by -1.

Fig. 7 The Corresponding graph Gd

 The MCM of Gd is found by first constructing the series
of d+1 vectors, f(m),m=0,1,�.d, which are each of
dimension dX1. An arbitrary reference node is chosen in Gd
(call this node s). The initial vector f(0) is formed by setting
f(0)(s)=0 and setting the remaining entries of f(0) to α. If
node 1 is chosen as the reference node for the graph Gd in
Fig 4, then

 0
f(0) = α
 α
 α

The remaining vectors, f(m),m=1,2,,�.d are respectively
computed according to

 f(m)(j)= min(f(m-1)(i)+w(i,j))

 i∈ I

where w(i,j) is the weight of the edge i�j in Gd and I is the
set of nodes in Gd such that there exists an edge from node i
to node j (i � j) . This series of vectors found from Gd in
Fig 4 is

f(1) = f(2) =

f(3) = f(4) =

Table 2: Values of f(4)(i)-f(m)(i)
 4-m

 for 1<=I<=4 and 0<=m<=3

For example, f(4)(1) is computed as
f(4) (1)= min(f(3) (2)-w(2,1) , f(3) (3)-w(3,1) , f(3) (4)-w(4,1))
 = min(-4,-4,∞-5,0-5) = -8.

From the vectors f(m) , m= 0,1,2�.d the iteration bound can
be computed as

T∞ =-mini∈ {1,2,�..,d} max f(d)(i)-f(m)(i)
 m∈ {0,1,�.d-1} d-m

in our example, d=4,

Table 2 shows the values of
 f(4)(i)-f(m)(i)
 4-m

For 1≤i≤4 and 0 ≤m ≤3. In some cases we may encounter
f(d)(i)-f(m)(i)= ∞-∞. In this case ∞-∞ should be treated as
zero. For example, f(4)(4)-f(1)(4)= ∞-∞, so the value (∞-
∞)/3=0/3=0 is given for i=4 and m=1 as shown in the Table
2.
T∞=-min {-2, -1, -2, ∞}=2

 M=0 M=1 M=2 M =3 Max0<=m<=3
f(4)(i)-f(m)(i)
 4-m

I=1 -2 -α -2 -3 -2

I=2 -α -5/3 -α -1 -1

I=3 -α -α -2 -α -2

I=4 Α �α α �α α �α α Α

-8
-5
-4
∞

-5
-4
∞
0

-4
∞
0
∞

∞
0
∞
∞

Int. J. Advanced Networking and Applications 1566
Volume:04 Issue:02 Pages: 1560-1567 (2012) ISSN : 0975-0290.

5. RESULTS

5.1 Longest path matrix algorithm technique
 In the longest path matrix (LPM) algorithm, a series of
matrices is constructed, and the iteration bound is found by
examining the diagonal elements of the matrices. As
explained in the earlier section, we get the LPM output as
shown below.

 The required result iteration bound for the above DFG is
obtained as shown below.
Step 1: Get the Menu using GUI command:
Here, the menu pops up with all the options required for the
project analysis.
Step 2: Click the circuit file tab:
Here, the input data circuit tab appears, where we enter
input.
Step 3: Enter the input:
Here the input itdata1 is the m.file which has the input DFG
(shown in fig. 3) in the form of matrix.
Step 4: Click the ITB using LPM algorithm tab.
After the above step, we get a connection matrix
corresponding to the DFG of the circuit. It has the
formation of the tree branch where the starting node

Fig. 8 GUI for the whole module

is any delay element and terminated with any other delay
element and without having any delay element in between.
Step 5: The Iteration Bound is found as shown below (fig.
9)
Thus the 1st technique is used as shown above for the input
1.

Fig. 9 Iteration bound result for input 1, using LPM
algorithm

5.2. Minimum cycle mean algorithm technique
 The minimum cycle mean (MCM) algorithm reduces the
problem of determining the iteration bound to the problem
of finding the MCM of a graph. Here we compute the
MCM efficiently by using the technique as explained in the
section 4. Recall the terms �cycle� and �loop� can be used
interchangeably.

5.3 Multi rate to single rate synthesis
 As explained in the section 4, the step two is used to
compute the iteration bound of Multi rate DFG. The
process is to construct a SRDFG that is equivalent to the
MRDFG & Compute the iteration bound of the equivalent
SRDFG using the LPM algorithm, or the MCM algorithm.

 Here the input mrdfg1 is the m.file which has the input
DFG (shown in fig 10) in the form of matrix and the k
values as explained in the section 4.

Fig. 10 A multi-rate DFG

Fig. 11 An equivalent SRDFG for the MRDFG in fig 10

 The equivalent SRDFG is used as the input in the matrix
format and the edges are reduced using edge degeneration
algorithm, which will not alter the output iteration bound.
The table 5.1 below shows the number of edges reduced
after using the algorithm.

Table 3

 Total
Number of edges before edge
degeneration

 24

Number of edges after edge
degeneration

 16

Total decrease in percentage = [100-{(16/24)*100}]

 = 33.33%

6. CONCLUSION
At present the challenge of designer is developing the
complex algorithms in the chip is a very tedious task,
reason is it has to meet the specification requirements. For
one particular purpose there are number of algorithms
which could complete the task but there is no information
available about how much speed maximally we can achieve
if these algorithms applied to the physical realization.

 The proposed tool can solve the problem of designer by
providing a very easy means to estimate the iteration bound

Int. J. Advanced Networking and Applications 1567
Volume:04 Issue:02 Pages: 1560-1567 (2012) ISSN : 0975-0290.

corresponding to pick up algorithms. Not only that if there
is a requirement of enhancement of the speed in future, this
can be taken care at the beginning itself and as a result cost
effective solution can be generated within the short period.
There are number of applications where multi rate circuit is
being used, it is difficult to analyze such kind of the multi
rate system. Tool has been developed in the presented work
to synthesize the multi rate circuit by the single rate even
with the quality of having less number of edges. It is
expected that proposed solution will provide the help to
researchers and professionals who wants to have the best
speed facility in the circuit.
 Using unfolding technique, design of the circuit can
have the speed equal to iteration bound, if the original
circuit is having a fractional value of iteration bound.

ACKNOWLEDGEMENTS
This paper is dedicated to our parents, and family for their
love, endless support and encouragement. We would also
thank our friend, Mr. Narendra Reddy P. N. for his
constant support and guidance.
 We would like to thank the Department of Electronics
and Communication Engineering, management o f S c h o o l
of Engineering and Technology, Jain University, Bangalore
for their constant support and encouragement in
undertaking the work.

REFERENCES

[1]. Open-Source VLSI CAD Tools: A Comparative
Study by L. Jin, C. Liu and M. Anan, Dept. of
Electrical and Computer Engineering, Purdue
University Calumet, Hammond USA, Email:
muhammad.anan@calumet.purdue.edu, Phone:
219-989-2483.

[2]. Evolution and Trends of VLSI Design
Methodologies and CAD Tools by Raj Singh, IC
Design Group, CEERI, Pilani - 333 031, Tel :
01596-242359, Fax : 01596-242294, Email :
raj@ceeri.ernet.in.

[3]. Determining the Iteration Bounds of Single-Rate
and Multi-Rate Data-Flow Graphs, Kazuhito Ito,
Dept. of Elec. and Elect. Eng., Tokyo Institute of
Technology, Meguro-ku, Tokyo 152, Japan,
kazuhito@ss.titech.ac.jp, Keshab K. Parhi, Dept.
of Electrical Engineering, University of Minnesota,
Minneapolis, MN 55455, U.S.A.,

[4]. Rate Optimal VLSI Design from Data Flow
Graph, Moonwook Oh and Soonhoi Ha,
Department of Computer Engineering, Seoul
National University, Kwanak-ku Shinlim-dong San
56-1, Seoul, Korea, fmwoh, shag@iris.snu.ac.kr

[5]. Iteration Bound Analysis and Throughput,
Optimum Architecture of SHA-256 (384,512) for
Hardware Implementations, Yong Ki Lee(1),
Herwin Chan(1), and Ingrid Verbauwhede(1), (2)
(1) University of California, Los Angeles, USA,

(2) Katholieke Universiteit Leuven, Belgium
{jfirst,herwin,ingrid}@ee.ucla.edu.

[6]. The Floyd-Warshall Algorithm on Graphs with,
Negative Cycles, Stefan Hougardy, Research
Institute for Discrete Mathematics, University of
Bonn, Lenn´estr. 2, 53113 Bonn, Germany.

[7]. Gopal S.Gawande,, Approaches To Design &
Implement High Speed-Low Power Digital Filter:
Review

[8]. An Experimental Study of Minimum Mean, Cycle
Algorithms, UCI-ICS Technical Report # 98-32,
Ali Dasdan, Department of Computer Science,
University of Illinois at Urbana-Champaign, 1304
W. Spring_eld Ave., Urbana, IL 61801, E-mail:
dasdan@ics.uci.edu

[9]. Faster Maximum and Minimum Mean Cycle,
Algorithms for System Performance Analysis, Ali
Dasdan, Department of Computer Science,
University of Illinois at Urbana-Champaign, 1304
W. Spring_eld Ave., Urbana, IL 61801, Rajesh K.
Gupta, Department of Information and Computer
Science, University of California, Irvine, CA
92697.

[10]. Computer Science Journal of Moldova, vol.6,
no.1(16), 1998, Algorithms for finding the
minimum cycle, mean in the weighted directed
graph, D. Lozovanu C. Petic.

Authors Biography

G. S. Satish Kumar received Bachelor of
Engineering degree in Electronics and
Communication Engineering from Reva
Institute of Technology and Management,
Bangalore, Visvesvaraya Technological
University, Belgaum and pursuing Master of
Technology degree from School of

Engineering and technology, Jain University, in the field of
SP & VLSI Design. His research interests are VLSI and
Signal Processing based applications.

Hari Krishna Moorthy received obtained
Bachelor of Engineering from G.V.I.T.
K.G.F, Bangalore University in 2001 and
Master of Engineering from Sathyabama
University, Chennai in the year 2007.
Assistant Professor in the Department of

Electronics and Communication, Engineering, School of
Engineering and Technology, Jain University, Bangalore-
Karnataka, India.

